Marker stability throughout 400 days of in vitro hyphal growth in the filamentous ascomycete, Sclerotinia sclerotiorum.
نویسندگان
چکیده
The stability of routinely used, population genetic markers through approximately 1 year of continuous laboratory growth was investigated in the common, plant pathogentic ascomycete Sclerotinia sclerotiorum. Given reports of accelerated mutation rates at higher temperatures, both a permissive temperature, 22 degrees C, and a temperature at the high end of tolerance, 30 degrees C, were employed. Because mycelial growth rate was tracked among mitotic lineages established for each strain, a subsidiary objective was addressed, testing the stability of a 30 degrees C-competent phenotype. Twelve laboratory strains of S. sclerotiorum, including the genome sequence isolate, 1980, were propagated serially for up to 400 days at 22 degrees C. Five of these strains were also propagated at 30 degrees C. No mutations were observed in mycelial compatibility groupings (MCGs), DNA fingerprints, alleles at 7 microsatellite loci, or alleles at 56 AFLP loci. All of these markers show variation in field populations, which are likely much larger and influenced by different and more stochastic environmental processes. In S. sclerotiorum, population genetic markers were stable over time through serial transfer and growth of laboratory strains at both 22 degrees C and 30 degrees C. The strain isolated after extended drought and capable of infecting plants at 28 degrees C demonstrated the stability of its high temperature-competent phenotype, in addition to its stable growth rate at 22 degrees C. This observation has implications for modeling pathogen tolerance or adaptation under conditions of environmental stochasticity, including climate warming.
منابع مشابه
Population structure and phenotypic variation of Sclerotinia sclerotiorum from dry bean (Phaseolus vulgaris) in the United States
The ascomycete pathogen Sclerotinia sclerotiorum is a necrotrophic pathogen on over 400 known host plants, and is the causal agent of white mold on dry bean. Currently, there are no known cultivars of dry bean with complete resistance to white mold. For more than 20 years, bean breeders have been using white mold screening nurseries (wmn) with natural populations of S. sclerotiorum to screen ne...
متن کاملUsing Beta-Glucan Isolated from Helianthus annuus Infected by Sclerotinia sclerotiorum in Bakery
Sclerotinia sclerotiorum is a phytopathogenicfungus that attacks more than 400 plant species of them medicinal plant. In this study the extract obtained from basal stalk rot of Helianthus annuus L., attacked by S. sclerotiorum, was subjected to the analysis of FTIR to identify the presence of beta-glucan. FT-IR spectrum showed four ranges of bands in 890 cm-1, two overlap band in 1047 and 1078 ...
متن کاملSelection of endophytic fungi from comfrey (Symphytum officinale L.) for in vitro biological control of the phytopathogen Sclerotinia sclerotiorum (Lib.)
Biological control consists of using one organism to attack another that may cause economic damage to crops. Integrated Pest Management (IPM) is a very common strategy. The white mold produced by Sclerotinia sclerotiorum (Lib.) causes considerable damage to bean crops. This fungus is a soil inhabitant, the symptoms of which are characterized by water-soaked lesions covered by a white cottony fu...
متن کاملThe Sclerotinia sclerotiorum Slt2 mitogen-activated protein kinase ortholog, SMK3, is required for infection initiation but not lesion expansion.
Mitogen-activated protein kinases (MAPKs) play a central role in transferring signals and regulating gene expression in response to extracellular stimuli. An ortholog of the Saccharomyces cerevisiae cell wall integrity MAPK was identified in the phytopathogenic fungus Sclerotinia sclerotiorum. Disruption of the S. sclerotiorum Smk3 gene severely reduced virulence on intact host plant leaves but...
متن کاملA novel partitivirus that confers hypovirulence on plant pathogenic fungi.
UNLABELLED Members of the family Partitiviridae have bisegmented double-stranded RNA (dsRNA) genomes and are not generally known to cause obvious symptoms in their natural hosts. An unusual partitivirus, Sclerotinia sclerotiorum partitivirus 1 (SsPV1/WF-1), conferred hypovirulence on its natural plant-pathogenic fungal host, Sclerotinia sclerotiorum strain WF-1. Cellular organelles, including m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Fungal genetics and biology : FG & B
دوره 45 5 شماره
صفحات -
تاریخ انتشار 2008